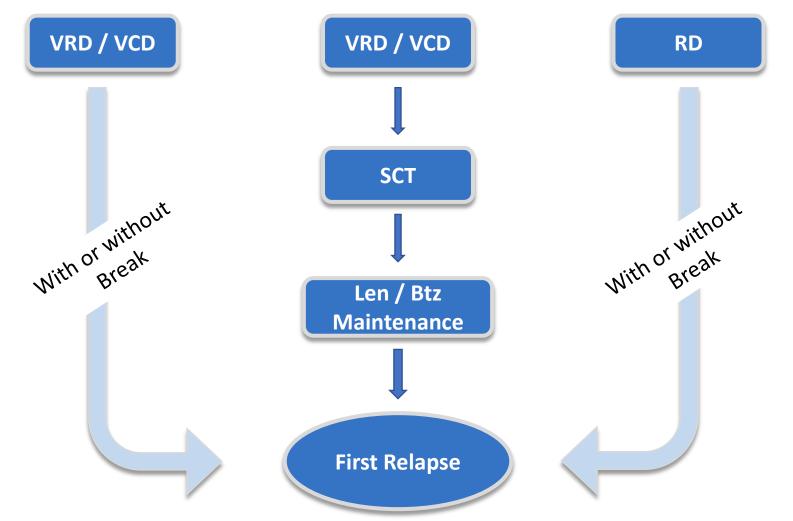
Update on options for relapsed MM in 2019

PARAMESWARAN HARI

PROFESSOR OF MEDICINE

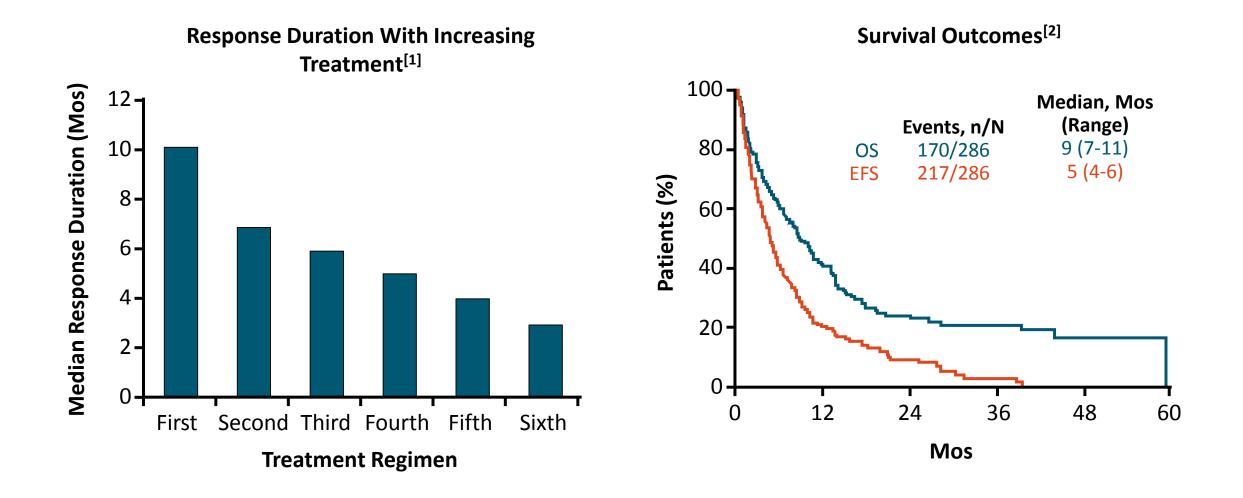
MEDICAL COLLEGE OF WISCONSIN

Disclosures


• Advisor: Celgene, Takeda, BMS, Janssen

Summary Initial Therapy of MM in 2019

- Transplant Based
 - Still Standard of Care
 - Induction Triplet RVD (CyBorD Start in some cases)
 - Dara CyBorD or KCD if NOT prohibited by insurance
 - Goal MRD Neg esp. if High Risk patient or Choosing delayed transplant
- High Risk Disease
 - Trials
 - MRD Negativity Goal
- Coming soon:
 - Response adapted induction
 - Immunotherapy in early therapy


RELAPSED DISEASE

The Landscape of Relapsed MM today

VRD (or VRd)=bortezomib + lenalidomide + dexamethasone; VCD=bortezomib + cyclophosphamide + dexamethasone; RD (or Rd)=lenalidomide + dexamethasone; SCT=stem cell transplantation; Len=lenalidomide; Btz=bortezomib

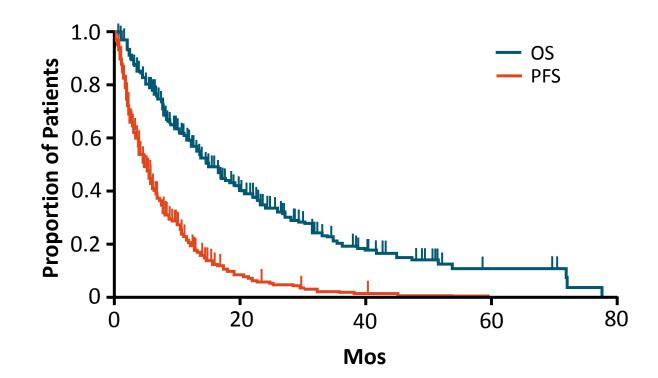
Confronting Disease Relapse in Myeloma

Definition of Relapsed and Refractory Myeloma

- Relapsed/refractory myeloma^[1,2]
 - Meets IMWG criteria for PD^[3]
 - RR MM: progression on therapy in patients who obtain ≥ minor response or progress within 60 days of most recent therapy
 - Primary refractory MM: progression on therapy without having achieved at least minor response
 - Relapsed MM: meets IMWG criteria for PD but does not fit definition of RR or primary refractory MM

IMWG Criteria for PD^[3]

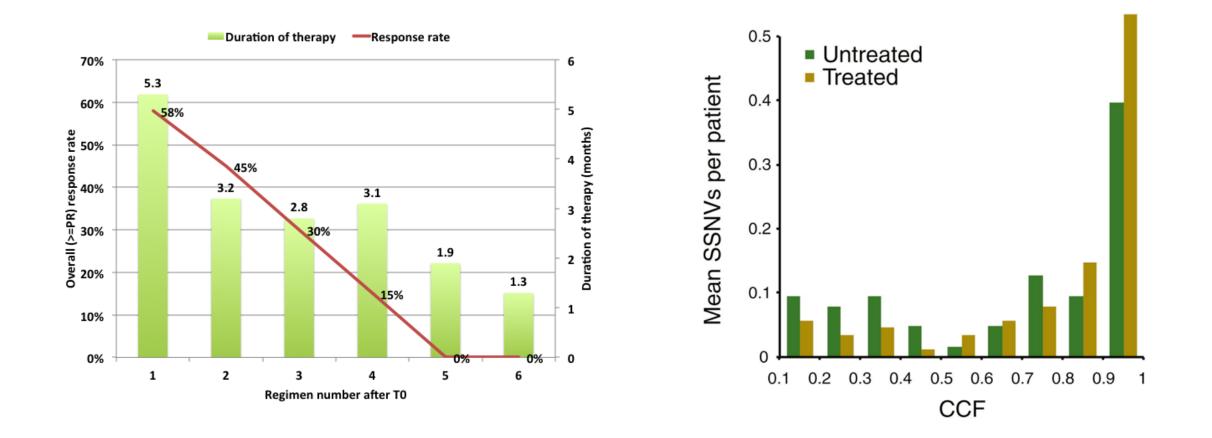
≥ 25% increase from nadir in:

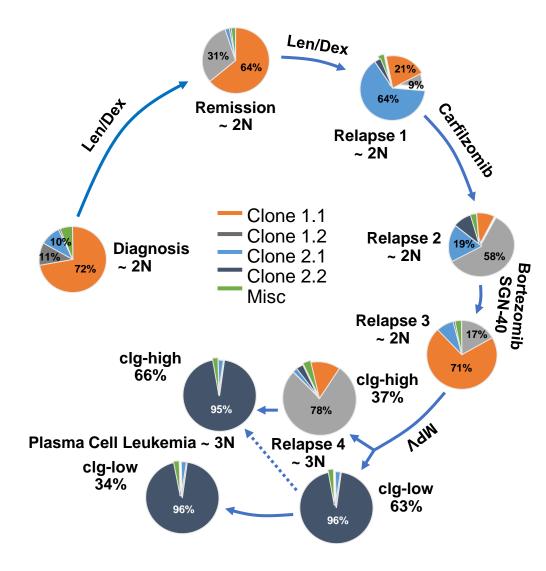

- Serum or urine M-protein (absolute increase ≥ 0.5 g/dL* and ≥ 200 mg/24 hrs, respectively), or
- Difference between involved and uninvolved FLC levels⁺ (absolute increase > 100 mg/L), or
- Bone marrow plasma cells[‡] (absolute increase ≥ 10%), or
- New lesions (≥ 50% increase in SPD of > 1 lesion or longest diameter of previous lesion > 1 cm in short axis), or
- Circulating plasma cells (≥ 50% increase [minimum 200 cells/µL] if only measure of disease)

*If lowest M component \geq 5 g/dL, increase must be \geq 1 g/dL. †In patients without measurable serum/urine M-protein.

[‡]In patients without measurable serum/urine M-protein or involved FLC.

IMWG Study on Refractory Myeloma: Scope of the Problem


Survival From Time of PI and IMiD resistance


Questions to Ask before treatment

- Do I really need to treat this patient?
- Does the patient have new high-risk features? Marrow?
- What drugs have been used so far?
- Response to previous treatments (eg, efficacy, duration of response, toxicity)?
- How well is the patient (PS, marrow reserve)?
- What are the patient's goals/preferences?

Development of Resistance

Kumar SK, et al. Unpublished data; Lohr JG, et al. Cancer Cell. 2014;25(1):91–101.

- Multiple clones may be present at the time of diagnosis
- The predominant clone may change over time, especially after sequential treatment rounds
- Relapse can occur when:
 - Existing clone no longer has to compete for space with the formerly dominant clone
 - Acquires additional mutation(s) providing a growth and/or survival advantage
- Combination chemotherapy needed for optimal disease control
- Different clones may emerge at different bone/EMD sites

Why Care About Sequencing of drugs?

- 1. Need to treat multiple relapses
- 2. Better understanding of disease biology
- Increasing drug/combination choices: Evidence-based using emerging phase
 3 data
- 4. Adapting treatment to individual patients: disease heterogeneity
- 5. Need to optimize efficacy, while minimizing toxicity

General Principles

- Duration of initial response defines biology
- Triplet (two active classes + dex) preferred over doublet

At least one drug from a non-refractory class

- Consider PS, age and comorbidities when selecting drug/doses
- Take into account prior toxicities/residual toxicities
- Treat to maximum response and maintain on one drug until progression or tolerability

Risk Stratification of Relapsed disease

- Duration of initial response/ primary refractory disease
- Acquisition of new abnormalities (1qamp, del17p)
- ISS/RISS
- Performance status
- Presence of EMD
- Circulating plasma cells

Factors in Selecting Relapsed Therapy

Disease

- Risk Status
- Cytogenetics
- del [17p], t(4;14), t(14;16)
- Rapidity of relapse
 - Rate of rise
 - Organ damage
 - Extramedullary disease
 - Plasma cell leukemia

Treatment

- Previous therapy
 - Depth
 - Duration
- Route of administration
- Single or combination
- Cost
- Toxicity
 - Myelosuppression
 - Neuropathy
 - Thrombosis
- Risk of SPM

SPM: secondary primary malignancy

Dimopoulos MA, et al. Nat Rev Clin Oncol. 2015;12(1):42-54.; Baz R, et al. Support Care Cancer. 2015;23(9):2789-2797.

Can I Use Previous Regimen Again as Salvage?

- Depth of response
 - How rapidly and successfully did it work?¹
 - CR, VGPR, PR, MR, SD
- Duration of response²
 - How long did it last?
- Are there better options for my patient that give better depth and duration of response?
- If depth and duration (minimum 18 months) reasonable, consider re-treating with same regimen knowing it will likely be less effective.

CR=complete response, PR=partial response, MR=minimal response, SD=stable disease

1. Niesvizky R, et al. Br J Haematol. 2008;143(1):46-53. 2. Agarwal A, et al. Clin Lymphoma Myeloma Leuk .2016; 7(2):69-77.

Drug Options for MM in 1st Relapse

Immunomodulatory drugs

- Thalidomide
- Lenalidomide

Proteasome inhibitors

- Bortezomib
- Carfilzomib
- Ixazomib

Traditional chemotherapy

CyclophosphamideAdriamycin/doxil

Monoclonal antibodies

- Daratumumab
- Elotuzumab

Most Recent Approved Agents and Regimens for Relapsed/Refractory Myeloma

Treatment	Previous Lines of Therapy
Carfilzomib (IV proteasome inhibitor) monotherapy	≥ 1
Carfilzomib (IV proteasome inhibitor) + dexamethasone ± lenalidomide	1-3
Daratumumab (IV CD38-targeted antibody) monotherapy	≥ 3
Daratumumab (IV CD38-targeted antibody) + dexamethasone + lenalidomide or bortezomib	≥ 1
Daratumumab (IV CD38-targeted antibody) + pomalidomide + dexamethasone	≥ 2
Elotuzumab (IV SLAMF7-targeted antibody) + lenalidomide + dexamethasone	1-3
Elotuzumab (IV SLAMF7-targeted antibody) + pomalidomide + dexamethasone	≥ 2
Ixazomib (PO proteasome inhibitor) + lenalidomide + dexamethasone	≥ 1
Panobinostat (PO HDAC inhibitor) + bortezomib + dexamethasone	≥ 2

Carfilzomib [PI]. Daratumumab [PI]. Elotuzumab [PI]. Ixazomib [PI]. Panobinostat [PI].

Phase III Lenalidomide-Based Therapy for R/R Myeloma

Trial	ORR, %	≥ CR, %	≥ VGPR, %	Median PFS, Mos	Median OS, Mos	Median F/u (OS), Mos
ASPIRE: KRd vs Rd ^[1]	87 vs 67	32 vs 9	70 vs 40	26.3 vs 16.6 HR: 0.69	48.3 vs 40.4 HR: 0.79	67.0
TOURMALINE-MM1: IxaRd vs Rd ^[2]	78 vs 72	14 vs 7	48 vs 39	20.6 vs 14.7 HR: 0.74	NR	23.0
POLLUX: DRd vs Rd ^[3-5]	93 vs 76	57 vs 23	80 vs 49	44.5 vs 17.5 HR: 0.44	NR vs NR HR: 0.63	36.0
ELOQUENT-2: ERd vs Rd ^[6,7]	79 vs 66	5 vs 9	36 vs 30	19.4 vs 14.9 HR: 0.73	48.3 vs 39.6 HR: 0.78	60.5

1. Stewart. ASH 2017. Abstr 743. 2. Moreau. NEJM. 2016;374:1621. 3. Dimopoulos. NEJM. 2016;375:1319.

4. Dimopoulos. ASH 2017. Abstr 739. 5. Bahlis. ASH 2018. Abstr 1996. 6. Dimopoulos. EHA 2017. Abstr S456.

7. Lonial. ASCO 2018. Abstr 8040.

Phase III PI-Based Therapy for R/R Myeloma

Trial	ORR, %	≥ CR, %	≥ VGPR, %	Median PFS, Mos	Median OS, Mos	Median F/u (OS), Mos
ENDEAVOR: Kd vs Vd ^[1]	77 vs 63	13 vs 6	54 vs 29	18.7 vs 9.4 HR: 0.53	NR vs 24.3 HR: 0.79	12.5
CASTOR: DVd vs Vd ^[2,3]	84 vs 63	29 vs 10	62 vs 29	16.7 vs 7.1 HR: 0.31	NR HR 0.63	19.4
PANORAMA-1: PanoVd vs Vd ^[4,5]	61 vs 55	11 vs 6	28 vs 16	12.0 vs 8.1 HR: 0.63	40 vs 36 HR: 0.94	
Elotuzumab (phase II) EVd vs Vd ^[6]	66 vs 63	4 vs 4	36 vs 27	9.7 vs 6.9 HR: 0.72	NR HR: 0.61	16.0
MMY1001 (<i>phase I</i>): DKd vs Kd ^[7]	84	27	71	NR (1-yr PFS: 71%)	NR (1-yr OS: 82%)	12.0

1. Dimopoulos. Lancet Oncol. 2016;17:27. 2. Palumbo. NEJM. 2016;375:754. 3. Lentzsch. ASCO 2017. Abstr 8036. 4. San-Miguel. Lancet Oncol. 2014;15:1195. 5. San-Miguel. ASH 2015. Abstr 3026. 6. Jakubowiak. Blood. 2016;127:2833. 7. Chari. ASCO 2018. Abstr 8002.

Pomalidomide-Based Salvage Therapy for R/R Myeloma

Trial	Patient Population	Primary Endpoint	ORR, %	≥ VGPR, %	Median PFS, Mos	Median OS, Mos
Pom/Dex (N = 302) ^[1] Phase III trial vs HD Dex	R/R; ≥ 2 lines of tx including len and btz	PFS	31 vs 10	6 vs < 1	4.0 vs 1.9	12.7 vs 8.1
Bortezomib + Pom/Dex (N = 559) ^[2] Phase III trial vs Vd	1-3 lines of tx with len exposure; prior PI ok	PFS	82 vs 50	53 vs 18	11 vs 7	NR
Carfilzomib + Pom/Dex (N = 57) ^[3]	R/R to most recent tx; 1-3 lines of tx; len refractory	MTD, PR rate	62	23	10.3	NR (1 yr: 67%)
Daratumumab + Pom/Dex (N = 103) ^[4]	R/R; ≥ 2 lines of tx, including len and btz	MTD	60	42	8.8	17.5
lxazomib + Pom/Dex (N = 32) ^[5]	1-5 lines of tx, including len and PI; len refractory	MTD activity	48; high risk: 58	20		
Elotuzumab + Pom/Dex (N = 60) ^[6] Phase II trial vs Pom/Dex	≥ 2 lines of tx including IMiD and PI; refractory to last tx	PFS	53 vs 26	20	10.3 vs 4.8	

1. San Miguel. Lancet Oncol. 2013;14:1055. 2. Richardson. ASCO 2018. Abstr 8001. 3. Bringhen. Leukemia. 2018;32:1803.

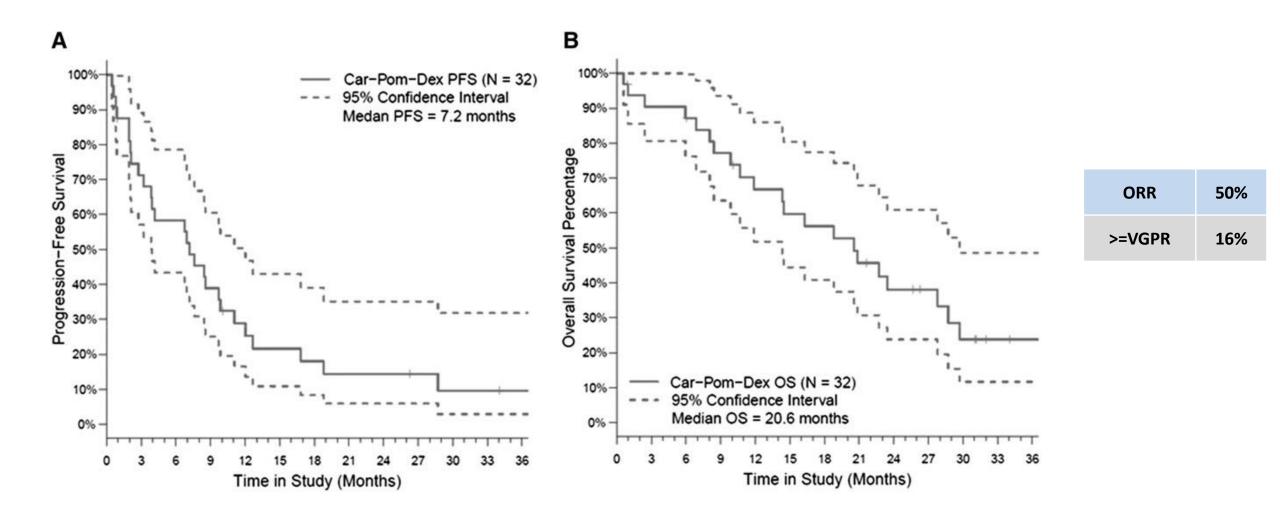
4. Chari. Blood. 2017;130:974. 5. Krishnan. Leukemia. 2017;[Epub]. 6. Dimopoulos. EHA 2018. Abstr LBA2606.

How to Make the Best Choice for Therapy

PD While Not on Lenalidomide Maintenance

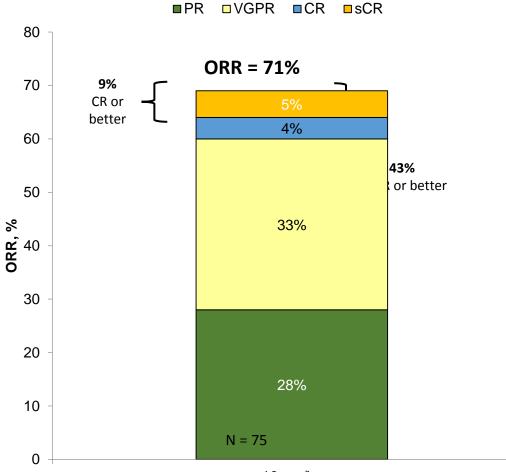
Triplets (with Rd as backbone) Daratumumab + Rd Carfilzomib + Rd Ixazomib + Rd Elotuzumab + Rd PD On Lenalidomide Maintenance (Len-Refractory)

Triplets (with other backbones) Daratumumab + Vd Daratumumab + PomD Daratumumab + KD Carfilzomib + PomD Ixazomib + PomD Elotuzumab + PomD


Other options: Kd, PomD, clinical trial (!)

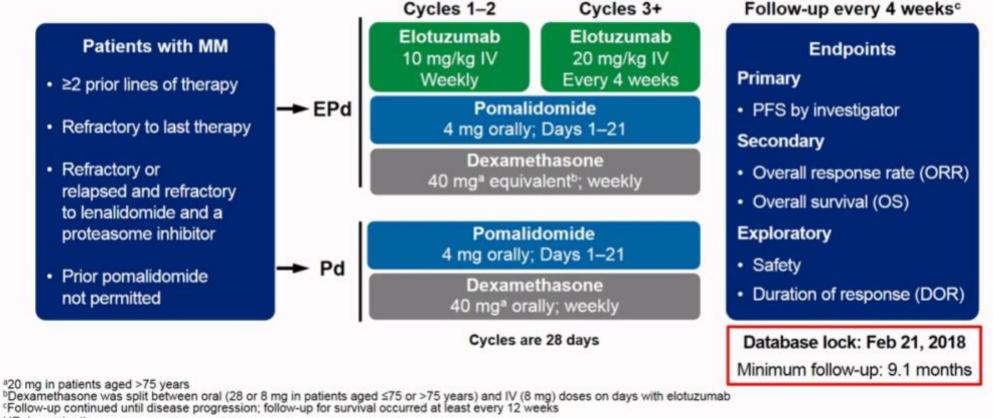
Continue with triplet combinations with ≥ 1 new agent at each relapse

How do we choose – A case


- 73-yr-old man with relapsed MM who presents for follow-up with new onset bone pain and anemia
- History:
 - ISS stage II myeloma (Dx 2010): lenalidomide/bortezomib/ dexamethasone x 4 cycles, then single ASCT (VGPR)
 - Lenalidomide maintenance (CR x 4 yrs followed by symptomatic relapse with new del[17p])
 - Carfilzomib/dexamethasone (VGPR) followed by second ASCT and lenalidomide maintenance (VGPR x 18 mos who has now developed symptomatic relapse)

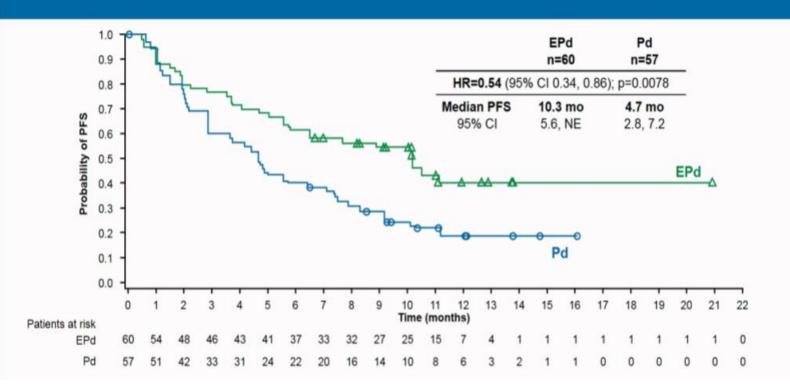
Carfilzomib-Pomalidomide-Dex (KPd)

Daratumumab-Pomalidomide-Dex (DPd)


	DARA + POM-D (N = 75)		
	n (%) 95% Cl		
Overall response rate (sCR+CR+VGPR+PR)	53 (71)	59.0-80.6	
Best response sCR CR VGPR PR MR SD PD	4 (5) 3 (4) 25 (33) 21 (28) 2 (3) 17 (23) 3 (4)	$\begin{array}{c} 1.5 - 13.1 \\ 0.8 - 11.2 \\ 22.9 - 45.2 \\ 18.2 - 39.6 \\ 0.3 - 9.3 \\ 13.8 - 33.8 \\ 0.8 - 11.2 \end{array}$	
VGPR or better (sCR+CR+VGPR)	32 (43)	31.3-54.6	
CR or better (sCR+CR)	7 (9)	3.8-18.3	

16 mg/kg

ELOQUENT-3: Study design


An international, open-label, randomized, phase 2 trial (NCT02654132), with a 2-sided α=0.2 and 85% power to detect a true HR of 0.57

HR, hazard ratio

ELOQUENT-3: Results

Progression-Free Survival (ITT Definition)

- 46% reduction in risk of progression or death for EPd vs Pd
- Safety consistent with previous reports of elo and pom

EPd, elotuzumab, pomalidomide, dexamethasone; Pd, pomalidomide, dexamethasone

Dimopoulos et al. Presented at EHA 2018. Abstract LB2606

A.R.R.O.W. Study

Primary Endpoint: PFS Twice-weekly Once-weekly Kd 20/70 mg/m² Kd 20/27 mg/m² (n=240) (n=238) Progression/Death, n (%) 148 (62%) 126 (53%) 100 Median PFS, months 11.2 7.6 HR (Kd 20/70/Kd 20/27) (95% CI) 0.693 (0.544, 0.883) 80 p-value (2-sided) 0.0029 PFS (%) 60 40 20 Kd Once-weekly (70 mg/m²) 0 Kd Twice-weekly (27 mg/m²) 12 15 18 21 0 3 6 9 Months from Randomization Number of Patients at Risk: Kd 20/70 240 114 178 145 69 24 0 5 4 164 86 41 15 0 Kd 20/27 238 119

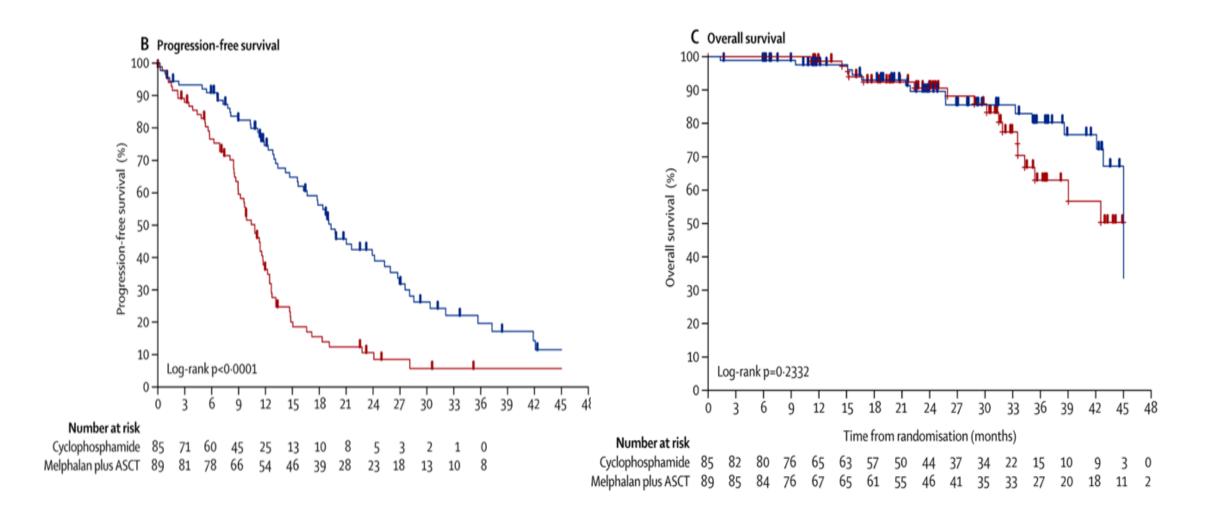
Data cutoff date: June 15, 2017; Median follow-up: 12.6 (once-weekly) and 12.0 (twice-weekly) months

CI, confidence interval; HR, hazard ratio

Should I Consider a Second ASCT?

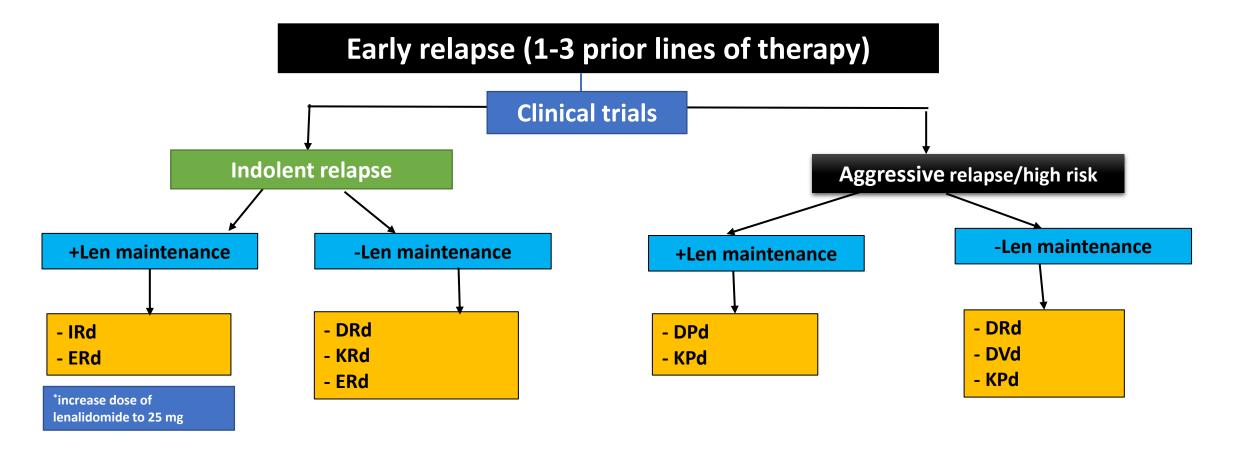
2.

3.


• Did the patient tolerate the first ASCT well?

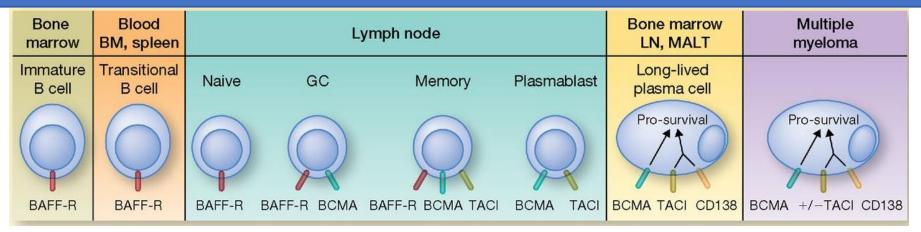
• Did the patient have 18+ months of PFS benefit after the first ASCT (in absence of maintenance)?

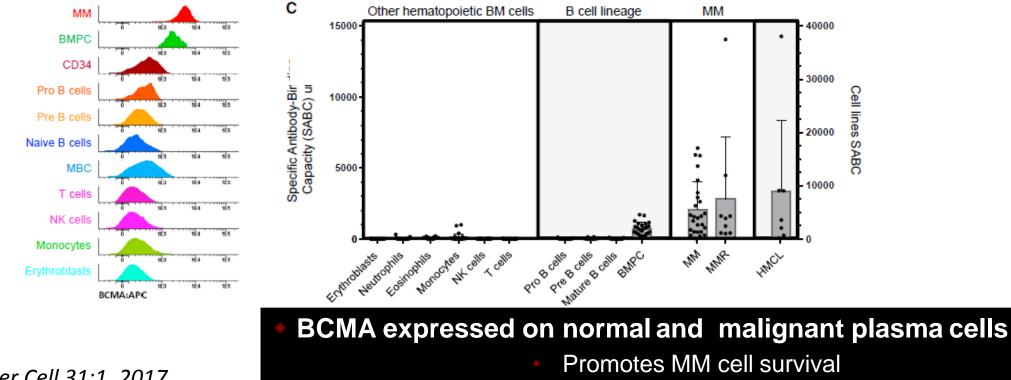
• Did the patient have a minimum of 24+ months PFS after the first ASCT followed by maintenance?


Note: Expect only 50% to 70% of PFS with second ASCT

Salvage High-Dose Chemotherapy (HDT)

New Agents and Clinical Trials


Approach to Initial Relapse (<3 lines)

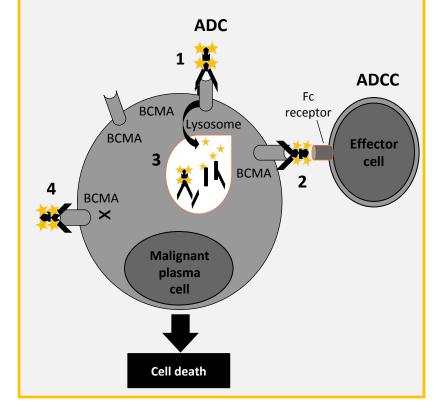


- I Ixazomib
- E Elotuzumab
- D Daratumumab
- K Carfilzomib
- R Lenalidomide

- V Bortezomib
- P Pomalidomide
- Len Lenalidomide

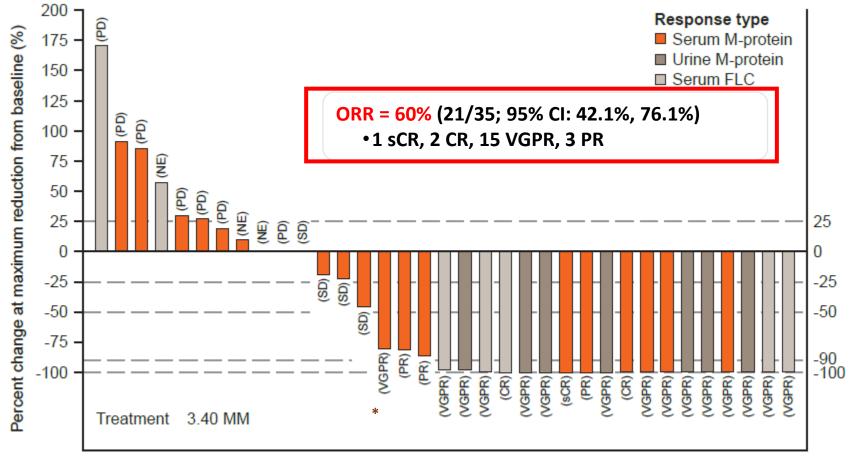
B-Cell Maturation Antigen (BCMA), a near perfect target

Seckinger A. Cancer Cell 31:1, 2017


GSK 7916 – One way to target BCMA

- GSK2857916: humanized, afucosylated IgG1 anti-BCMA antibody; neutralization of soluble BCMA
 - Preclinical studies demonstrate selective and potent activity¹

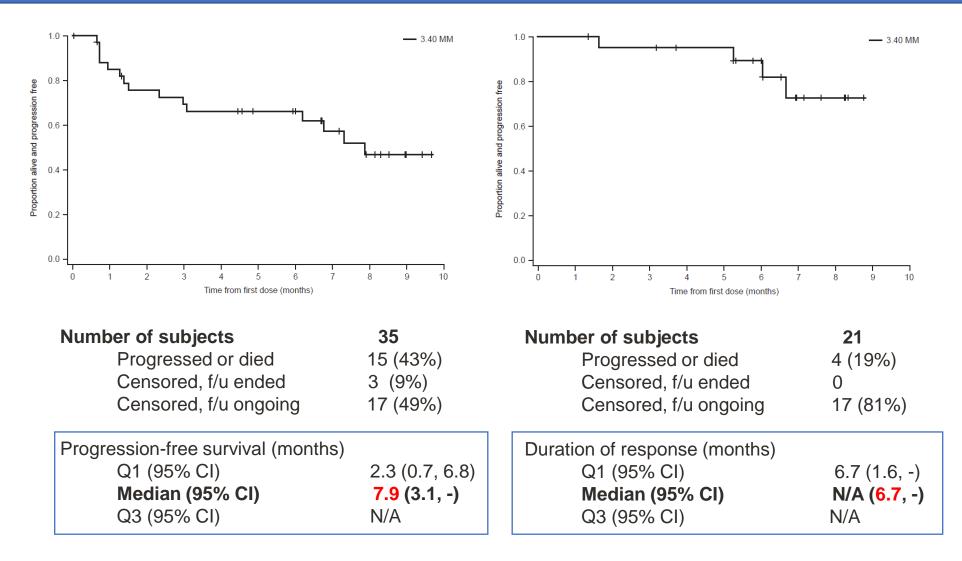
Cytotoxic agent	MMAF (non-cell permeable, highly potent auristatin
Afucosylation	Enhanced ADCC
Linker	Stable in circulation


Four mechanisms of action:

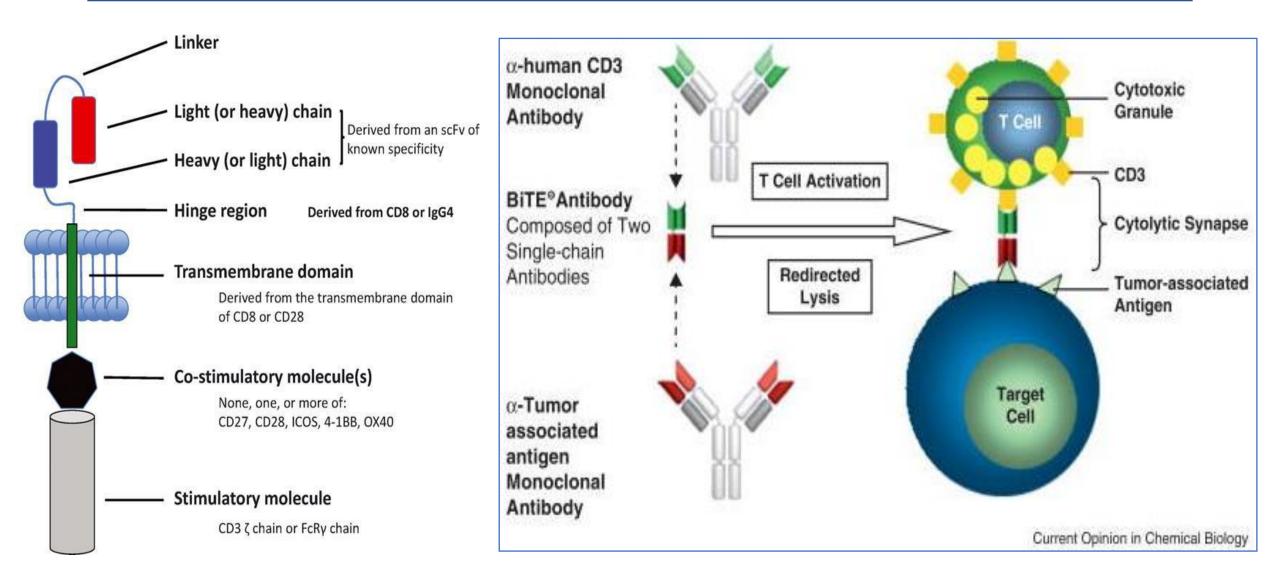
- 1. ADC mechanism
- 2. ADCC mechanism
- 3. Immunogenic cell death
- 4. BCMA receptor signalling inhibition

ADC, antibody-drug conjugate; ADCC, antibody-dependent cell-mediated cytotoxicity; BCMA, B-cell maturation antigen; IgG, immunoglobulin G; MMAF, monomethyl auristatin-F

DREAMM-1 Part 2: Maximum % Reduction in M-Protein or Free Light Chain from Baseline

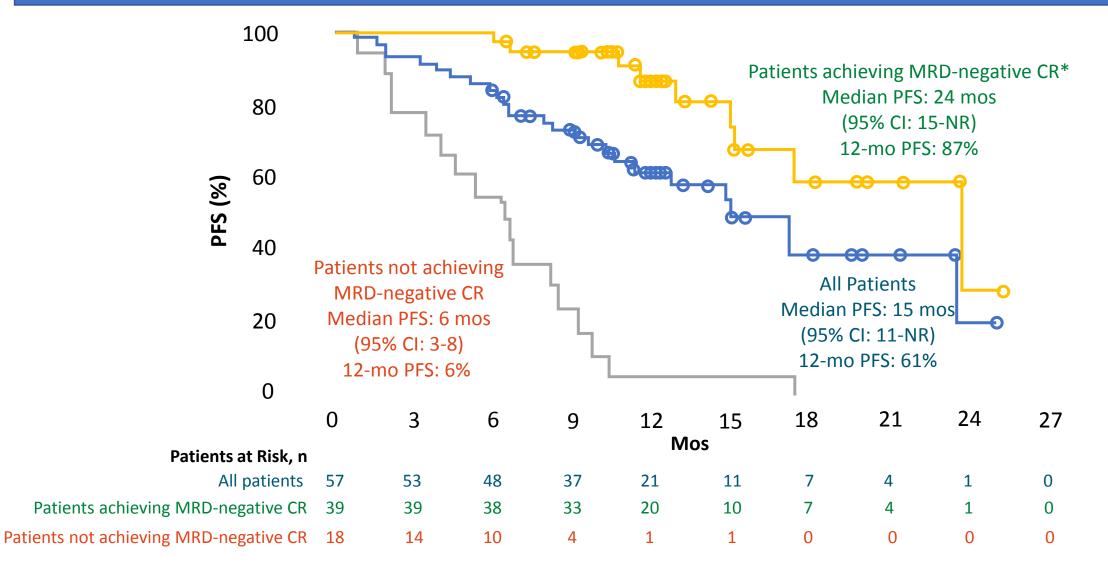


Subject (best confirmed response)


*One patient with a VGPR had a <90% reduction in serum M-protein due to missing laboratory data, which was confirmed by investigators as too small to quantify after the data cut-off

CI, confidence interval; CR, complete response; FLC, free light chain; M-protein, myeloma protein; ORR, overall response rate; PD, progressive disease; PR, partial response; sCR, stringent complete response; SD, stable disease; VGPR, very good partial response

DREAMM-1 Part 2: Efficacy – Progression-free Survival and duration of response


2 other major ways to target BCMA

ASH 2018

	Juno JCARH125	CARsgen CT053	Bluebird bb21217	Legend/Janssen LCAR-B38M
ASH 2018 Abstract	Mailankody et al. Abstract #957	Jiang et al. Abstract #960	Shah et al. Abstract #488	Zhao et al. Abstract #955
Enrollment	8 evaluable	13 evaluable	7	57
Median Prior Lines	10 (4-15)	4 (2-10)	9 (4-17)	3 (1-9)
High-Risk Cyto	50%	NR	50%	NR
Response Rate	ORR: 8 (100%) CR/sCR: 3	ORR 13 (100%) CR: 2	ORR: 6 (86%) CR/sCR: 1 MRD-neg: 3/3	ORR 50 (88%) CR: 42 MRD-neg:39
Median F/U	1.25 months	2 months	4 months	12 months (CR: 22 mos.)
Median PFS	-	-	-	15 months (CR: 24 mos.)
Median OS	-	-	-	NR

LEGEND-2 Updated Analysis: PFS

Zhao. ASH 2018. Abstr 955.

*30/39 patients still in remission

A Legendary problem....

Nanjing Legend's developing LCAR-B38M dataset (NCT03090659)							
Presented at	Asco 2017		Ash 2017	Ash 2018			
Data cut	Feb 2017		Aug 2017	Jun 2018			
Patient n	35		11	57			
Hospital (n)	Xi'an Jiaotong (35)	RM (6)	RJ (3)	CZ (2)	Xi'an Jiaotong (57)		
Best ORR	100%	100%			88%		
CR	15 (43%)	5 (83%) 2 (67%) 1 (50%)		42 (74%)			
PR	20	1	1	1	8		
No response	0	0	0	0	7		
Notes	2 relapses	Further 6 pts treated 14 relapses					
RM=Renji Hosp; RJ=Jiangsu Provincial Hosp; CZ=Shanghai Changzheng Hosp.							

Second Affiliated Hospital of Xi'an Jiaotong University, 57 subjects treated.

Three other hospitals taking part in the trial: Ruijin Hospital; Jiangsu Provincial and Shanghai Changzheng (17 additional pts)

At least 1-3 TRM ? (17 deaths – 14 PD)

Other COD – suicide after PD; esophagitis; PE? SOB?

No Intent to treat data

Much less advanced pts than US BCMA targeted trials

The BiTEs are catching up...AMG 420 phase 1 study

6.5 µg/d 1 50 µg/d 2 100 µg/d 3 200 µg/d 4 5 These 4 patients still 6 responding and receiving $400 \ \mu g/d$ × 7 AMG 420 on study * -> 8 9 10 $800 \ \mu g/d$ 11 10 2 3 7 8 9 0 Cycle Progressive Disease Partial Response (PR)

Doses $3.2 \rightarrow 800 \text{ mcg/d}$

Only patients with data available at datacut are included in this graph.

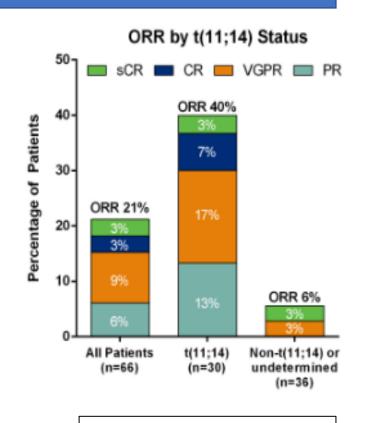
CRS AEs and Serious AEs (SAEs)

		N=42	# Gr 1	# Gr 2	# Gr 3	# Gr 4	# Gr 5
CRS	All treatment-related	16 (38%)	13	2	1	-	-
SAEs in ≥2	Infections	12 (29%)	-	3	7	-	2*
patients	Peripheral polyneuropathy	2 (5%)	-	-	2	-	-
Treatment-	Peripheral polyneuropathy	2 (5%)	-	-	2	-	-
related SAEs	Edema	1 (2%)	-	-	1	-	-

*One patient died of aspergillus / flu and one of liver failure secondary to adenovirus infection.

- Of those with serious AEs (n=20, 48%), 17 patients were hospitalized and 4 had prolonged hospitalization (one patient had both on separate occasions).
- No grade 3 or 4 central nervous system toxicities were observed.
- Regarding any nervous system AEs, except for 1 case of worsening asthenia and 2 of peripheral polyneuropathy, all AEs were grade 1 and 2 and were generally nonspecific (eg, headache, fatigue).

Finally ... More New Drugs


- Selinexor
- Venetoclax
- Oprozomib
- Melflufen

Venetoclax therapy - t(11:14) Myeloma

Design: Phase II, open label, study of venetoclax plus DEX	
 <u>Dosing & Schedule</u>: VEN: initial 2 week lead in period with weekly dose-escalation Final doses: daily at 800 mg plus DEX 40 mg weekly <i>Median 3 prior lines</i> 	
 RESULTS: Overall Responses – 65% Len Refractory – 71% ; BORT Refractory – 82% 6mo freedom from Progression – 64% 	

• Median time on VEN: 2.5 mo (0.2-23); 26% received VEN + dex for a median of 1.4 mo (0.1-11)

Safety, n (%)	Venetoclax
Gr 3/4 (≥10%)	Thrombocytopenia (26%), neutropenia (20%), lymphopenia (15%), anemia (14%), and decreased white blood cells (12%)
SAEs ≥2 pts	Pneumonia (n=5), sepsis (3), pain, pyrexia, cough, and hypotension (2 each)
Deaths	8 (all considered unrelated to VEN)

venetoclax monotherapy

Kumar S, et al. ASH 2016. Abstract 488. Kaufman J, et al ASH 2017 Abstract 3131

Carfilzomib + Venetoclax

Key eligibility criteria:

• Pts with RRMM and no prior carfilzomib exposure

VenKd on 28-d cycles in 4 cohorts:

- 1: (n=4) Ven 400 mg/d + K 27 mg/m² Days 1, 2, 8, 9, 15, 16 + dex 40 mg QW
- 2: (n=3) Same as 1) but Ven 800 mg/d
- 3: (n=6 + 22^a) Ven 800 mg/day + K 70 mg/m² Days 1, 8, 15 + dex 40 mg QW
- 4: (n=7) Ven 800 mg + K 56 mg/m² Days 1, 2, 8, 9, 15, 16 + dex 20 mg Days 1, 2, 8, 9, 15, 16, 22, 23

Treatment continued until progressive disease or unacceptable toxicity

Efficacy	Ν	ORR , %	≥CR, %
All patients	42	79	38
PI refractory	21	76	43
IMiD refractory	26	77	23
Double refractory (PI & IMiD)	14	71	29
t(11;14) positive	8	100	63
High-risk cytogenetics	12	83	33
Standard-risk cytogenetics	29	76	38

Key Conclusions:

- MTD was not reached. Ven 800 mg/day + K 70 mg/m² QW was selected for expansion
- Ven + Kd appears tolerable with no new safety signals or changes in Ven pharmacokinetics
- Response rates were comparable in all high-risk subgroups; the subset with t(11;14) had the highest response

SINE COMPOUNDS: **Selinexor + Dex (N=79)**

XPO1 (Exportin 1)

increases the nuclear export / inactivation of tumor suppressor proteins (e.g. p53, IkB, p21, FOXO) export / translation of eIF4E-bound oncoprotein mRNAs (e.g. c-MYC, BCL-2, Cyclin D).

PFS 2.1 mo

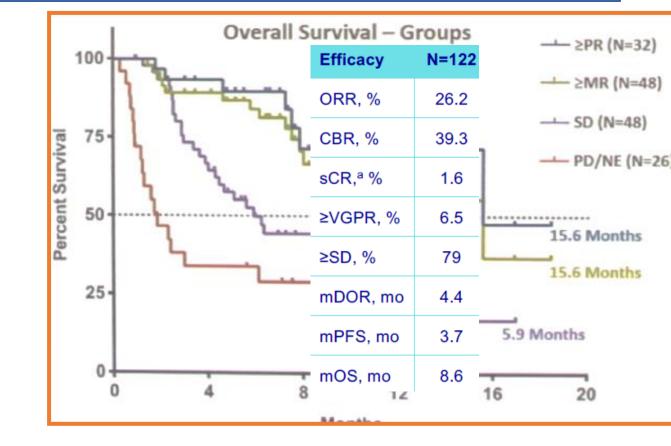
5 mo

DOR

Design: Phase II study of Sd			Efficacy	All	Quad	Penta
Study Population: RRMM			ORR	21%	21%	20%
 48 pts refractory to REV, Person REV, Per	OM, V, K (Quad)		CBR	32%	29%	37%
 33 pts refractory to above + 	- anti-CD38 mAbs (Penta)					
Dosing & Schedule:				Efficacy	ORR, n	(%)
S: 80 mg BIW for 6 or 8 doses of a 28 d cycle		Standard Risk		4 (17)		
D: 20 mg BIW		High Risk		6 (33)		
Median age: 68 yrs				(17p13) t(14;16)	3 (38 1 (10	,
			t(14,10)		2 (50)	
Safety, n (%) Gr 3/4 (≥10%)	All patients			_		
Thrombocytopenia	58		Efficacy	A 11	Deenendere	Non-
Neutropenia	21			All	Responders	responder
Anemia Fatigue	25 14		mOS	9.3 mo	NR (>11 mo)	5.7 mo
Hyponatremia	20			9.3 mo		5.7 110

Most quad patients (83%) received 6 doses/cycle; penta patients (65%) received 8 doses/cycle

Vogl DT, et al. ASH 2016. Abstract 491.


Selinexor (STORM)

Key eligibility criteria:

- Patients with penta-refractory RRMM (BORT, CAR, LEN, POM, DARA and alkylator [including last therapy])
- ANC ≥1000 mm³
- Platelets ≥50k/mm³ (≥75k if marrow plasma <50%)
- Creatinine clearance ≥20 mL/min
- Hemoglobin ≥8.5 g/dL

Selinexor + dexamethasone (Sd) (N=123) 80 mg selinexor + 20 mg dexamethasone 2QW

> (eg, Monday and Wednesday or Tuesday and Thursday, etc)

- 32.2% of patients discontinued treatment due to AEs.
- There were 4 deaths on treatment: sepsis, respiratory failure, PE, and an unrelated, unspecified cardiac event

Allogeneic SCT

- Graft-vs-myeloma effect
- Can potentially provide sustained disease control (ie, cure)
- High treatment-related mortality
- Morbidity from GVHD
- No definite OS advantage vs autologous SCT
- Should be offered to high-risk patients in trials

Summary - Relapse

- Early Relapse
 - Choice of Triplets
 - KRD with OS data now
 - Dara RD
 - POM for R in the post maintenance setting
- Refractory Relapse
 - Variety of New Compounds
- CAR-T vs. Other
 - Waiting in line for CAR-T vs. Trying something else?